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Compacton solutions for a class of two parameter generalized odd-order
Korteweg–de Vries equations

Bishwajyoti Dey
Department of Physics, University of Pune, Pune 411 007, India

~Received 7 April 1997!

We study the fifth-order fully nonlinearK(m,n,p) equations and obtain a class of exact compacton solu-
tions. We find that addition of the fifth-order dispersion term increases the range of the nonlinear parameters
m, n, and p for which these compacton solutions are allowed. We consider the Hamiltonian structure and
conservation laws of this class of equations. We also study the class of two parameter generalized odd-order
equations and obtain the exact compacton solutions and the range of the nonlinearity and dispersion parameters
as well as the relation between them.@S1063-651X~98!11003-6#

PACS number~s!: 03.40.Kf, 52.35.Sb, 63.20.Ry
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I. INTRODUCTION

Recently, Rosenau and Hyman@1# introduced a class o
solitary waves with compact support that are termed co
pactons. Such solitary wave solutions, which vanish outs
a finite core region, are solutions of a two parameter fam
of fully nonlinear dispersive equationsK(m,n):

ut1~um!x1~un!3x50, m,n.1. ~1!

TheseK(m,n) equations have been used to understand
role of nonlinear dispersions in the pattern formation in l
uid drops. These equations have the property that for cer
values of the nonlinearity parametersm andn, their solitary
wave solutions are compactons, which, like solitons@2#, have
the remarkable property that after colliding with other co
pactons, they reemerge with the same coherent shape@1#.
The compacton’s amplitude depends on its velocity, but,
like the soliton’s, which narrows as the amplitude~velocity!
increases, its width is independent of the amplitude and
locity @1,3#. It has been shown that the compacton solutio
of Eq. ~1! are allowed only for nonlinearity parameters in t
range 2<m5n<3. The upper limit on the parametersm and
n is necessary for the compacton solutions to be a solutio
the classical sense, i.e., the finite derivatives of the solu
at the edges. This allowed range of nonlinearity parame
is determined by the third order dispersive term in Eq.~1!. In
this paper we consider a fifth-order equation, which we te
as theK(m,n,p) equation, of the form

ut1b1~um!x1b2~un!3x1b3~up!5x50, m,n,p.1. ~2!

One of the motivations for studying this higher-order equ
tion is to examine the role of the fifth-order term in th
existence of the compacton solutions. Secondly, there
been an increased interest recently on the role of the fi
order dispersion term on the soliton stability for the us
Korteweg–de Vries~KdV! equation. For example, it ha
been shown that@4# for the fifth-order equation of the type

ut1aupux1bu3x1gu5x50 ~3!

the solitary wave solutions are unstable with respect to
collapse type instabilities ifp>4 for g50 and forgÞ0, i.e.,
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the addition of the fifth-order term, stabilizes the solitons
p.4 @4,5#. The exact upper limit of the nonlinearity param
eterp in this case is still an open question. In this paper
show that theK(m,n) equation when modified by the add
tion of the fifth-order dispersion term increases the range
the nonlinearity parameters as compared to that when su
term is absent. In particular, from the exact solutions of E
~2! we find that forb3Þ0, the range of the nonlinear param
etersm,n, andp for which compacton solutions are allowe
is 2<m5n5p<5, whereas forb350 @Eq. ~1!# the corre-
sponding range is 2<m5n<3 @1#. Eventually, the number
of compacton solutions for integer values of nonlinear p
rameters increases when higher-order dispersion terms
added. For example, forb350, there are two compacto
solutions for integer values of the nonlinear paramet
m,n52,3, whereas, forb3Þ0, there are three compacto
solutions form,n,p52,3,5. Similarly, for the equation with
the seventh-order dispersion term, four compacton soluti
will be allowed for integer value of the nonlinearity param
etersm,n,p,q52,3,4,7. We would like to point out here tha
the compacton solutions are also allowed for noninteger
ues of the nonlinearity parameters within their allow
range. We have been able to show that these results are
valid for a class of compacton solutions of the generaliz
equation with an arbitrary odd-order dispersion term.
show this, we obtain in Sec. IV a class of exact compac
solutions for the generalized two parameter equation w
arbitrary odd-order dispersion term. The plan of the pape
as follows: in Sec. II we discuss some exact compacton
lutions of Eq.~2!. The Hamiltonian structure and the conse
vation laws of these equations are discussed in Sec. III wh
we also obtain the massM and the energyE of the compac-
ton solutions. In Sec. IV, we study the problem for a class
two parameter arbitrary odd-order equations and obtai
class of exact compacton solutions for these general
equations. From this we obtain a relation between the par
eters as

d5
2n

k21
, ~4!

wherek is the nonlinearity parameter,n is the arbitrary odd-
4733 © 1998 The American Physical Society
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4734 57BISHWAJYOTI DEY
order dispersion parameter andd defines different allowed
compacton solutions@see Eq.~7! below#. We conclude in
Sec. V.

II. EXACT COMPACTON SOLUTIONS

We seek a solution of Eq.~2! of the form of a traveling
wave

u~x,t !5u~j!5u~x2Dt !. ~5!

In terms of Eq.~5! we can write Eq.~2! after one integration
as

2Du1b1~um!1b2~un!2j1b3~up!4j50 . ~6!

Using the ansatz

u~j!5A cosd~Bj! ~7!

for uBju<p/2 andu(j)50 otherwise, in Eq.~6!, we obtain a
class of one continuous parameter family of compacton
lutions, where

d5
4

p21
, ~8!

A~p21!5
D

b3B4pd~pd21!~pd22!~pd23!
, ~9!

B25
2~p2d222pd12!

@pd~pd22!#2

b1

b2
, ~10!

b35
1

b1
F b2pd~pd22!

2~p2d222pd12!
G 2

, ~11!

for 2<m5n5p<5. Note that the compacton solutions@Eq.
~7!# are also allowed for the continuous values of the non
earity parameter within the range given above. Some of
typical compacton solutions for the integer values of the n
linearity parameters are given below:

K~2,2,2! equation: u~j!5A2 cos4~B2j!, for uB2ju

<p/2, ~12!

K~3,3,3! equation: u~j!5A3cos2~B3j!, for uB3ju

<p/2, ~13!

K~5,5,5! equation: u~j!5A5cos~B5j!, for uB5ju

<p/2, ~14!

where Ap and Bp for p52, 3, and 5, respectively, can b
obtained from Eqs.~8!–~11!. Thus we find that within the
allowed parameter range 2<m5n5p<5 there are three
compacton solutions for the integer values of the nonline
ity parameters for the fifth-order equation where as there
only two compacton solutions for the parametersm,n in the
range 2<m5n<3 for the third-order equation@Eq. ~1!# @1#.
Thus the addition of the fifth-order term not only increas
the nonlinearity parameter range but also increases the n
o-
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ber of allowed compacton solutions. In Sec. IV we show t
this is true for the addition of any arbitrary odd-order disp
sion term.

III. CONSERVATION LAWS

A conservation law associated with equations of the fo
as Eq.~2! can be written as

]Q

]t
1

]X

]x
50. ~15!

This means thatQ is conserved in Eq.~2! if we can trans-
form it in the form as Eq.~15!. From Eq.~2! we can imme-
diately find one conservation law for which

Q5u, X5b1um1b2~un!2x1b3~up!4x . ~16!

We could not find any other conservation laws of this fift
order equation. This is in contrast to the third-order equat
@Eq. ~1!# for which there are two conservation laws@1#. To
see why there are no other conservation laws to Eq.~2!, we
note that Eq.~2! is not derivable from a Lagrangian an
hence does not possess the usual conservation laws of m
energy, etc., that are associated with KdV type equati
(n,p51). Hence, for the equation of the same type as
~2!, where nonlinearity parametersn,p are>2, we consider
a different fifth-order equation, which can be derived fro
the Lagrangian, leading to other conservation laws. For
we consider the Lagrangian

L5E Ldx5E dxF1

2
fxf t2d

~fx!
a11

a11
2a~fx!

b~f2x!
2

2b~fx!
c~f2x!

42g~fx!
d~f3x!

2G , ~17!

which leads to the generalized equations

ut2adua21ux1ab~b21!ub22~ux!
314abub21uxu2x

12aubu3x13bc~c21!uc22~ux!
5

124bcuc21~ux!
3u2x124bucux~u2x!

2

112buc~ux!
2u3x22gd~d21!~d22!ud23~ux!

3u2x

27gd~d21!ud22ux~u2x!
226gd~d21!ud22~ux!

2u3x

210gdud21u2xu3x26gdud21uxu4x22gudu5x50,

~18!

whereu(x)5]xf(x). This equation has the same terms as
the Eq.~2!, but the relative weights of the terms are differe
leading to more than one conservation law for theK(m,n,p)
type equations. For the sake of comparison, the set of par
etersm,n,p in Eq. ~2! corresponds toa5m, b115n, and
c135d115p in Eq. ~18!. The equation corresponding t
the case ofp52 of Eq.~2! can be obtained from Eq.~18! by
putting b50.

We can now obtain two conservation laws for Eq.~18! as
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Q15u,

X152dua1abub21~ux!
212aubu2x

13bcuc21~ux!
4112buc~ux!

2u2x

23gdud21~u2x!
222gd~d21!ud22~ux!

2u2x

24gdud21uxu3x22gudu4x ~19!

and

Q25
u2

2
,

X25a~b21!ub~ux!
212aub11u2x13b~c21!uc~ux!

4

112buc11~ux!
2u2x2~3d11!gud~u2x!

2

22gd~d22!ud21~ux!
2u2x22gud11u4x

22~2d21!guduxu3x . ~20!

The third conserved quantityQ3 can also be obtained as th
HamiltonianH, which is obtained from the Lagrangian@Eq.
~17!# as

H5E @pḟ2L#dx, p5
]L
]ḟ

5
1

2
fx

5E Fd ua11

a11
1aub~ux!

21buc~ux!
41gud~u2x!

2Gdx.

~21!

This third conserved quantity follows from the fact that E
~18! can be written in the canonical form

ut5]x

dH

du
5$u,H%, ~22!
lo
e

.

where the Poisson bracket structure is given by

$u~x!,u~y!%5]xd~x2y!. ~23!

The system of Eqs.~18! thus has the first three conservatio
laws, similar to that of the usual KdV-type equation
namely, the

‘‘area’’ under: u~x,t !5E
2`

1`

u~x,t !dx, ~24!

‘ ‘mass’’: M5
1

2E2`

1`

u2~x,t !dx, ~25!

and

‘‘energy’’: E5H

5E
2`

1`Fd ua11

a11
1aub~ux!

21buc~ux!
4

1gud~u2x!
2Gdx. ~26!

We could not find any other conservation laws for the syst
of equations~18!. Our inability to find more conservation
laws may suggest that the systems of equations~18! may not
be integrable.

Equations~18! support a class of one parameter family
compacton solutions of the form

u~j!5A cosn~Bj!, ~27!

where

n5
4

k21
, ~28!
Ak215
D

B4n$3b~k11!n3212bn22g@n3~2k21k21!22n2~k216k21!111n~k11!212#%
, ~29!

B25
a@22~k11!n#

2g@n3~2k21k21!2n2~k216k21!14n~k11!24#112bn226b~k11!n3
, ~30!

g5
d1B2n2@a~k11!23bB2n2~k11!#

B4n4~2k21k21!
, ~31!
on

re-
and

uBju<p/2. ~32!

u(j) is zero otherwise. From Eq.~30! we see that the width
of the compacton is independent of the amplitude and ve
ity D. The compacton solutions exist for continuous valu
of the nonlinearity parameterk5a5b115c135d11 in
c-
s

the range 2<k<5. Note that the nonlinearity parameterk
corresponds tok5m5n5p in Eq. ~2! for the compacton
solutions. Fork52,3,5 we get back the three compact
solutions for the integer values of the parameterm,n,p of
Eq. ~2! as obtained earlier@Eqs.~12!–~14!#. The constantsAk
andBk can be obtained from Eqs.~28!–~31! by substituting
k52, 3, and 5, respectively. The compacton solution cor
sponding to the case
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K~2,2,2! equation: u~j!5A2cos4~B2j! ~33!

is a new solution of the fifth order equation which is n
there for the third-order equation@Eq. ~1!# @1#. We can obtain
the ‘‘mass’’ and ‘‘energy’’ for the family of compacton so
lutions represented by Eq.~27!. As an example we obtain th
‘‘mass’’ and ‘‘energy’’ of the new compacton solution@Eq.
~33!# of the K(2,2,2) equation as

m5
35p~A2!2

256B2
~34!

and

E5
35pA2

3

128B2
F11

40
1

131

35
aB2

21
48

5
~22b23g!B2

4G ,
~35!

whereA2 and B2 can be obtained from Eqs.~28!–~31! by
substitutingk52. Similarly one can obtain the ‘‘mass’’ an
‘‘energy’’ corresponding to compacton solutions for oth
allowed values of the parameterk. In the next section we
show how to obtain a class of exact compacton solution
the generalized arbitrary odd-order KdV equations@6#.

IV. COMPACTON SOLUTIONS OF THE GENERALIZED
ODD-ORDER KdV EQUATIONS

We consider the generalized two parameter arbitrary o
order KdV equation of the form

ut1b1~uk!x1 (
n51

n

bn11~uk!~2n11!x50, ~36!

whereb i( i 51,2,3, . . . ) arereal numbers. Using the trans
formationj5x2Dt the above equation reduces to

2Duj1b1~uk!j1 (
n51

n

~uk!~2n11!j50 ~37!

using the ansatz for a class of compacton solutions

u~j!5A cosd~Bj! ~38!

for uBju<p/2 andu(j)50 otherwise for the compacton so
lutions, we obtain

~uk!3j5kAk21B2@~dk21!~dk22!cosd~k21!22~Bj!

2~dk!2cosd~k21!~Bj!#uj , ~39!

~uk!5j5kAk21B4@~dk21!~dk22!~dk23!~dk24!

3cosd~k21!24~Bj!2~dk22!~dk21!

3~2d2k224dk14!cosd~k21!22~Bj!

1~dk!4cosd~k21!~Bj!#uj ~40!

and in general for any odd order (n>3) derivative ofuk, it
can be shown that
r

of

d-

~uk!~2n11!j5kAk21B2nFMn
d~k21!22ncosd~k21!22n~Bj!

2~dk22n12!Mn
d~k21!22n12

3cosd~k21!22n12~Bj!1 (
m52

n22

~21!m1n

3~dk22m!Mn
d~k21!22mcosd~k21!22n~Bj!

1~21!n21~dk22!Mn
d~k21!22cosd~k21!22

3~Bj!1~21!n~dk!2ncosd~k21!~Bj!Guj ,

~41!

where

Mn
d~k21!22n5)

i 51

2n

~dk2 i !, ~42!

Mn
d~k21!22n125~dk22n12! )

i 51

2n22

~dk2 i !1~dk22n13!

3~dk22n14!Mn21
d~k21!22n14, ~43!

Mn
d~k21!22m5~dk22m!2Mn21

d~k21!22m1~dk22m12!

3~dk22m11!Mn21
d~k21!22m12 ~44!

for m52,3, . . . ,n22,

Mn
d~k21!225~dk22!2Mn21

d~k21!221~dk21!~dk!2n22,
~45!

with M0
d(k21)2250, M1

d(k21)225(dk21), and M1
d(k21)

5kd. Thus we see that all odd-order derivatives ofuk can be
expressed as a product ofuj and a function ofu(j). Thus,
Eq. ~41! when substituted in Eq.~37! gives us an algebric
equation that can be solved. So substituting Eqs.~41!–~45! in
Eq. ~37! and equating the coefficients of various powers
u(j) to zero, we get a set of equations that can be solved
the values ofA, B, d in Eq. ~38! as well as the relations
between theb i ’s under which the two parameter equatio
@Eq. ~36!# has the compacton solutions. We give below so
examples for different values of the nonlinearity parametek
and odd-order dispersion parametern. For n52 (n51 and
k52 case@Eq. ~1! is considered in@1## andk arbitrary, Eq.
~36! reduces to

ut1b1~uk!x1b2~uk!3x1b3~uk!5x50. ~46!

As shown earlier, form5n5p5k Eq. ~2! supports com-
pacton solutions@Eqs. ~7!–~11!# and this equation is the
same as Eq.~46! above. Substituting Eqs.~38!–~40! in Eq.
~46! we get the set of equations for

d5
4

k21
~47!

as
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D2kAk21B4b3~dk21!~dk22!~dk23!~dk24!50,
~48!

b12~kdB!2b21~kdB!4b350, ~49!

b22b3@~kd22!21~kd!2#50. ~50!

Now from Eq.~47! we see that the class of compacton so
tions is obtained for nonlinearity parameterk in the range
2<k<5. Thus we have three compacton solutions for in
ger values of the nonlinearity parameterk52,3,5 which can
be obtained from Eq.~38! and Eqs.~47!–~50! by substituting
a corresponding value of the parameterk. It can be easily
checked that these solutions agree with the solutions in E
~12!–~14!. It should be noted that the class of compact
solutions exists for all continuous~both integer and noninte
ger! values of the nonlinearity parameterk in the range
2<k<5. Similarly for any arbitrary odd-order dispersio
parametern>3, we get from Eq.~37! and Eqs.~41!–~45! for

d5
2n

k21
~51!

the set of equations for determiningA,B and relation be-
tweenb i ’s as

D2kAk21B2nbn11Mn
d~k21!22n50,

(
p50

n

~21!p~kdB!2pbp1150,

(
p51

n

~21!p21~B!2p22bp11M p
d~k21!2250,

b3M2
d~k21!241~dk24! (

p53

n

~21!pbp11B2p24M p
d~k21!24

50,

A A A

A A A

bn21Mn22
d~k21!22n142~dk22n14!~bnB2Mn21

d~k21!22n14

2bn11B4Mn
d~k21!22n14!50,

bnMn21
d~k21!22n122bn11B2~dk22n12!Mn

d~k21!22n1250.
~52!

For a given value of the nonlinearity parameterk and the
odd-order dispersion parametern, one can findd from Eq.
~51! and other values of constantsA,B and b i ’s from Eq.
~52! to obtain the compacton solutions@Eq. ~38!# of the
given Eq.~36!. As an example, for then53 case, the equa
tion is

ut1b1~uk!x1b2~uk!3x1b3~uk!5x1b4~uk!7x50.
~53!
-

-

s.
n

From Eq.~51! we see that the compacton solutions@Eq. ~38!#
now exist for the nonlinearity parameterk within the range
2<k<7. From Eq.~52! we get the corresponding set o
equations as

D2kAk21B6b4)
i 51

6

~dk2 i !50, ~54!

b12~kdB!2b21~kdB!4b31~kdB!6b450, ~55!

b222B2b3~d2k222dk12!1B4b4@~2k2d224kd14!

3~kd22!21~kd!4#50, ~56!

b32B2b4~3k2d2212kd120!50, ~57!

which can be solved forA,B and the relation betweenb i ’s to
get the compacton solutions.

Thus we find that with an increase in the value of t
odd-order dispersion parametern, the range of the nonlinear
ity parameterk also increases. From Eq.~51! we find that for
a given value of parametern, the class of compacton solu
tions is allowed for parameterk in the range 2<k<(2n11).
Similarly the value ofd @Eq. ~38!#, for which the compacton
solutions are allowed, also increases with the increase in
rametern. For a given value of the parametern, the value of
d varies within the range 1<d<2n.

V. CONCLUSIONS

We have examined here the effect of a higher-order d
persion term on a particular class of compacton solutions
the K(m,n) type equations as studied by Rosenau and H
man @1#. We find that the addition of the higher-order di
persion term increases the range of the nonlinearity par
eter for which the class of compacton solutions are allow
We have studied the Hamiltonian structure and conserva
laws for these types of higher-order equations and find
these equations may not be integrable. We generalize
problem by studying the two parameter generalized eq
tions with an arbitrary odd-order dispersion term and non
earity and obtain a class of exact compacton solutions of
generalized system of equations. We also obtain the rang
nonlinear parameters as well as the relations between t
for which the compacton solutions are allowed for this ge
eralized system of equations. It would be interesting to
amine the stability of these compacton solutions as obtai
here to find whether the compacton solutions for all the c
tinuous values of the parameters within their allowed ran
are stable, or, the parameter range as obtained here is fu
limited by the stability criteria for the compacton solution
as it happens in the case of soliton stability for the high
order KdV type equations@4,5#. This is, however, an inde
pendent problem and requires finding analytically stabi
criteria for the compacton solutions, as is done for the cas
soliton stability . The other alternative approach would be
perform numerical simulations of the scattering of comp
ton solutions@1# to examine the stability and preservation
shape after scattering.
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