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Compacton solutions for a class of two parameter generalized odd-order
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We study the fifth-order fully nonlineak(m,n,p) equations and obtain a class of exact compacton solu-
tions. We find that addition of the fifth-order dispersion term increases the range of the nonlinear parameters
m, n, andp for which these compacton solutions are allowed. We consider the Hamiltonian structure and
conservation laws of this class of equations. We also study the class of two parameter generalized odd-order
equations and obtain the exact compacton solutions and the range of the nonlinearity and dispersion parameters
as well as the relation between thef81063-651X98)11003-9

PACS numbegps): 03.40.Kf, 52.35.Sb, 63.20.Ry

[. INTRODUCTION the addition of the fifth-order term, stabilizes the solitons for
p>4 [4,5]. The exact upper limit of the nonlinearity param-
Recently, Rosenau and Hymah| introduced a class of eterp in this case is still an open question. In this paper we
solitary waves with compact support that are termed comshow that theK(m,n) equation when modified by the addi-
pactons. Such solitary wave solutions, which vanish outsidéion of the fifth-order dispersion term increases the range of
a finite core region, are solutions of a two parameter familythe nonlinearity parameters as compared to that when such a

of fully nonlinear dispersive equatioé(m,n): term is absent. In particular, from the exact solutions of Eq.
" . (2) we find that forB;+# 0, the range of the nonlinear param-
Ut (UM +(u")3=0, mn>1. (1) etersm,n, andp for which compacton solutions are allowed

. is 2<m=n=p=<5, whereas foB;=0 [Eq. (1)] the corre-
TheseK(m,n) equations have been used to understand thgponding range is2m=n<3 [1’8]3 Eventﬂally, the number

rqle of nonlinear d|sper_5|ons in the pattern formation in I'q'.of compacton solutions for integer values of nonlinear pa-
uid drops. These (_aquat_lons have the property t_hat fqr ceraifl meters increases when higher-order dispersion terms are
values Olf the nonlinearity parametgrsr?nlqkn, thﬁ" solr:tary added. For example, foB;=0, there are two compacton
wave solutions are compactons, which, like so itk have solutions for integer values of the nonlinear parameters
the remarkable property that after colliding with other COM- ' n=2 3 whereas fol3s#0, there are three compacton
_pl)_ﬁctons, thety r,eemer?_te (\letz the game _fohelren_t S%ﬂ?e solutions form,n,p=2,3,5. Similarly, for the equation with

€ compacton's amphitude depends on 1ts velocily, BUL UN,e seyenth-order dispersion term, four compacton solutions

like the soliton’s, which narrows as the amplitugelocity) will be allowed for integer value of the nonlinearity param-

increases, its width is independent of the amplitude anq Veétersm,n,p,q=2,3,4,7. We would like to point out here that

of Eq. (1) are allowed only for nonlinearity parameters in the%he compacton SQIU“ODS are also alloweq f_or non_integer val-
' ues of the nonlinearity parameters within their allowed
.range. We have been able to show that these results are also
Valid for a class of compacton solutions of the generalized
Iéquation with an arbitrary odd-order dispersion term. To
"Show this, we obtain in Sec. IV a class of exact compacton
solutions for the generalized two parameter equation with
mérbitrary odd-order dispersion term. The plan of the paper is
as follows: in Sec. Il we discuss some exact compacton so-
m n Py lutions of Eq.(2). The Hamiltonian structure and the conser-
Uit Ba(UDt Bo(Wt Bo(UD)5 =0, mn,p=1. (2) vation laws of these equations are discussed in Sec. lll where
One of the motivations for studying this higher-order equa-We also obtain the madd and the energ¥ of the compac-
tion is to examine the role of the fifth-order term in the ton solutions. In Sec. IV, we study the problem for a class of
existence of the compacton solutions. Secondly, there hd¥/0 parameter arbitrary odd-order equations and obtain a
been an increased interest recently on the role of the fifthclass of exact compacton solutions for these generalized
order dispersion term on the soliton stability for the usualequations. From this we obtain a relation between the param-
Korteweg—de Vries(KdV) equation. For example, it has €ters as
been shown thdi4] for the fifth-order equation of the type

the classical sense, i.e., the finite derivatives of the solutio
at the edges. This allowed range of nonlinearity paramete
is determined by the third order dispersive term in @g. In
this paper we consider a fifth-order equation, which we ter
as theK(m,n,p) equation, of the form

U+ auPu,+ Bus,+ yus,=0 (3) o= —— (4)

the solitary wave solutions are unstable with respect to the
collapse type instabilities =4 for y=0 and fory#0, i.e.,  wherek is the nonlinearity parameten,is the arbitrary odd-
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order dispersion parameter a@dddefines different allowed ber of allowed compacton solutions. In Sec. IV we show that

compacton solutiongsee Eq.(7) below]. We conclude in
Sec. V.

Il. EXACT COMPACTON SOLUTIONS

We seek a solution of Eq2) of the form of a traveling
wave

u(x,t)=u(é)=u(x—Dt). (5)

In terms of Eq.(5) we can write Eq(2) after one integration
as

—Du+ B1(U™)+ Bo(u") e+ B3(UP) 4,=0. (6)
Using the ansatz
u(¢)=A cos(B¢) (7)

for |B&|< /2 andu(&) =0 otherwise, in Eq(6), we obtain a

class of one continuous parameter family of compacton s

lutions, where

o= (8

4
p—1’

W)

AP~ = ; , 9)
B3B pé(pé—1)(pé—2)(pé—3)

_2(p*8°—2ps+2) By

2 -

° [ps(ps—2)]> B2’ (19
1| Bpaps-2) |

P g, 2(p26%—2ps+2)] 1D

for 2<m=n=p=<5. Note that the compacton solutiofzg.

0_

this is true for the addition of any arbitrary odd-order disper-
sion term.
I1l. CONSERVATION LAWS

A conservation law associated with equations of the form
as Eq.(2) can be written as

9Q
at

X
o =0. (15
This means tha@ is conserved in Eq(2) if we can trans-
form it in the form as Eq(15). From Eq.(2) we can imme-
diately find one conservation law for which

Q=u, X=pBuM+ Bo(u")o+ Ba(UP),y. (16)
We could not find any other conservation laws of this fifth-
order equation. This is in contrast to the third-order equation
[Eqg. (1)] for which there are two conservation lalk]. To
see why there are no other conservation laws to(Eq.we
note that Eq.(2) is not derivable from a Lagrangian and
hence does not possess the usual conservation laws of mass,
energy, etc., that are associated with KdV type equations
(n,p=1). Hence, for the equation of the same type as Eq.
(2), where nonlinearity parametensp are=2, we consider
a different fifth-order equation, which can be derived from
the Lagrangian, leading to other conservation laws. For this
we consider the Lagrangian

sz[,dx:fdx

—B( ¢x)c( ¢2x)4_ ¥ d’x)d( ¢3x)2 )

(¢

a+1 - a(¢x)b(¢2x)2

1
)

17

(7)] are also allowed for the continuous values of the nonlin-

earity parameter within the range given above. Some of th
typical compacton solutions for the integer values of the non

linearity parameters are given below:

K(2,2,2 equation: u(é)=A, cos(B,¢), for |B,¢|
<7/2, (12

K(3,3,3 equation: u(é)=Asco8(B3¢), for |Bsél
<7/2, (13

K(5,5,5 equation: u(é)=AscogBs¢é), for |Bsél
<72, (14

fuhich leads to the generalized equations

u—adud tug+ ab(b—1)uP~2(uy )3+ 4abuP ™ tu,u,,
+2auPug,+3Bc(c—1)uc 2(u,)®
+24Bcu H(uy)3um+ 24BUCU,(Ugy )2
+12BU°(Uy) Uz — 2yd(d—1)(d—2)u 3(u,)3up,
—7yd(d—1)u? 2u,(up)?—6yd(d—1)u’?(u,)%us,
—10ydu® tuyug, — 6 ydud tuu,, — 2 yulus, =0,
(18)

where A, and B, for p=2, 3, and 5, respectively, can be whereu(x) = d,#(x). This equation has the same terms as in

obtained from Eqs(8)—(11). Thus we find that within the
allowed parameter rangesdn=n=p=<5 there are three

the Eq.(2), but the relative weights of the terms are different,
leading to more than one conservation law for i@n,n, p)

compacton solutions for the integer values of the nonlineartype equations. For the sake of comparison, the set of param-
ity parameters for the fifth-order equation where as there aretersm,n,p in Eq. (2) corresponds ta=m, b+1=n, and

only two compacton solutions for the parameters in the
range 2<m=n=<3 for the third-order equatiofEq. (1)] [1].

c+3=d+1=p in Eqg. (18). The equation corresponding to
the case op=2 of Eq.(2) can be obtained from E@18) by

Thus the addition of the fifth-order term not only increasesputting 8=0.
the nonlinearity parameter range but also increases the num- We can now obtain two conservation laws for Et8) as
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Q,=u, where the Poisson bracket structure is given by
Xy=— 8ud+ abuP~ (U, )2+ 2auPuy, {u(x),u(y)}=dx8(x=y). (23
+3B8cu’ Huy)*+ 128u(uy) Uy, The system of Eq918) thus has the first three conservation
_ _ laws, similar to that of the usual KdV-type equations,
_37dud 1(u2x)2_27d(d_1)ud 2(ux)2u2x name|y, the
—4ydu? tuug, — 2yuluy, (19 -
and area” under: u(x,t)=f_m u(x,t)dx, (24
v 1 [+
Q=7 “mass’: M= EJ u?(x,t)dx, (25)

Xo=a(b—1)uP(uy)?+2auP tu, +3B(c—1)uc(uy)*
+128u° 1 (U,) 2Upy— (3d+ 1) yud(Upy)?

—2yd(d—2)u"" (U Uz, — 27u" Uy,

and

“‘energy’: E=H

G a+1
—2(2d—1) yu%u,ug, . (20) = J_ Sor1t auP(uy)®+ Bu(uy)*
The third conserved quantif®; can also be obtained as the
HamiltonianH, which is obtained from the Lagrangiggqg. + yud(UZX)Z dx. (26)
(7] as
oL 1 We could not find any other conservation laws for the system
H:j [md—L]dX, 7=—== o, of equations(18). Our inability to find more conservation
i 2 laws may suggest that the systems of equati@8smay not
LA+l be integrable.
- j 5 +au®(uy)?+ Bu®(uy)*+ yu%(up)? [dx. Equations(18) support a class of one parameter family of
atl compacton solutions of the form
(21
u(§)=A cos'(Bg), (27)
This third conserved quantity follows from the fact that Eq.
(18) can be written in the canonical form where
P 22 _ 28
ut_axm_{ul }1 ( ) V_m! ( )
k—1_ D
: (29)
B*v{3B(k+1)13—128v?— y[ v3(2k?*+ k—1)— 2v%(k?+ 6k— 1)+ 11v(k+ 1) —12]}
- a[2—(k+1)v] 30
29[ 13(2k% 4+ k—1) — v2(K2+ 6k — 1)+ 4v(k+ 1) — 4]+ 12812 —68(k+ 1) v®’
5+B%v[a(k+1)—38B%1v?(k+1)]
= : (3D
B*v4(2k?+k—1)
|
and the range Zk<5. Note that the nonlinearity parameter
corresponds tk=m=n=p in Eq. (2) for the compacton
|BE|<m/2. (32)  solutions. Fork=2,3,5 we get back the three compacton

solutions for the integer values of the parameten,p of
u(é) is zero otherwise. From E@30) we see that the width Eqg.(2) as obtained earlidEqs.(12)—(14)]. The constants,
of the compacton is independent of the amplitude and velocand By, can be obtained from Eq§28)—(31) by substituting
ity D. The compacton solutions exist for continuous valuesk=2, 3, and 5, respectively. The compacton solution corre-
of the nonlinearity parametde=a=b+1=c+3=d+1 in  sponding to the case
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K(2,2,2 equation: u(&)=A,cos(B,¢) (33

is a new solution of the fifth order equation which is not
there for the third-order equati¢fq. (1)] [1]. We can obtain
the “mass” and “energy” for the family of compacton so-
lutions represented by E(R7). As an example we obtain the
“mass” and “energy” of the new compacton solutidiq.

(33)] of the K(2,2,2) equation as

35m(Az)?
- 2568, (34)
and
35mA,° 1,181, 48 o e
" 128, |40t 35 B2 T 5 (2 TINE
(35

where A, and B, can be obtained from Eq$28)—(31) by
substitutingk=2. Similarly one can obtain the “mass” and
“energy” corresponding to compacton solutions for other
allowed values of the parametkr In the next section we

show how to obtain a class of exact compacton solutions ofyg 5= =20+2_ (s 2n+2) H

the generalized arbitrary odd-order KdV equatipb

IV. COMPACTON SOLUTIONS OF THE GENERALIZED
ODD-ORDER KdV EQUATIONS

We consider the generalized two parameter arbitrary odd-

order KdV equation of the form

n

ut+ﬁ1(uk>x+n§1Bn+1(uk><2n+1>x=o. (36)

where 8;(i=1,2,3 ...) arereal numbers. Using the trans-
formation §=x—Dt the above equation reduces to

n

—Dug+ﬂl<uk>§+n§1(uk>(2n+1>§=o (37)

using the ansatz for a class of compacton solutions

u(¢)=A cos(B¢) (39

for |B&|<m/2 andu(&) =0 otherwise for the compacton so-
lutions, we obtain

(UX) 3= KA B[ (5k—1)(Sk—2)co* Y %(B¢)

—(8k)?co " V(BE)Jug, (39

(uF)5,=KA* B[ (Sk—1)(k—2)(Sk—3)(5k—4)
x cok"V=4Bg)— (sk—2)(8k—1)
X (26%Kk?—46k+4)codk—V=2(B¢)

+(8k)*co " V(BE)Ju, (40)

and in general for any odd orden%3) derivative ofu, it

can be shown that
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(uk)(2n+l)§:kAk—1BZn Mg(k—l)—chosa(kfl)—zn(Bg)
—(sk—2n+2)Mk- 122
n—-2
Xcoss(k—l)—2n+2(B§)+ 2 (_1)m+n
m=2
X (8k—2m)M D= 2Meogk- D=2 (Bg)
+(= 1" (Sk—2)M TP 2cogk D2
X (B&)+(—1)"(8k)?"cos™* V(BE) |ug,
(41)
where
2n
Mate D=1 (sk—), (42
=1

2n—2
(Sk—i)+(Sk—2n+3)
X(Sk—2n+4)M2Kk V-2t (43

MDD =2 (5K —2m)2M 2K D72y (sk—2m+ 2)

X (Sk—2m+1)M ok D -2m+2 (44)
form=2,3,...n—-2,
MK =22 (5k—2)2M KT D724 (5k—1) (k)2 2,

(45

with Mk D=2=0, Mk D~2=(sk—1), and MK
=k&. Thus we see that all odd-order derivativesibcan be
expressed as a product of and a function ofu(§). Thus,
Eqg. (41) when substituted in Eq37) gives us an algebric
equation that can be solved. So substituting E4H—(45) in
Eq. (37) and equating the coefficients of various powers of
u(é) to zero, we get a set of equations that can be solved for
the values ofA, B, § in Eqg. (38) as well as the relations
between theB;’s under which the two parameter equations
[Eq. (36)] has the compacton solutions. We give below some
examples for different values of the nonlinearity paramkter
and odd-order dispersion parameter-orn=2 (n=1 and
k=2 casdEq. (1) is considered if1]] andk arbitrary, Eq.
(36) reduces to
U+ B (U + Bo(U¥) 3+ B3(UX) 5 =0 (46)

As shown earlier, fom=n=p=k Eq. (2) supports com-
pacton solutiondEqgs. (7)—(11)] and this equation is the
same as Eq(46) above. Substituting Eq$38)—(40) in Eq.
(46) we get the set of equations for

4

0 k—1

(47)

as
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From Eq.(51) we see that the compacton solutig&s). (38)]

(48 now exist for the nonlinearity parametkrwithin the range
2<k=<7. From Eq.(52) we get the corresponding set of
B1—(kéB)?By+(ksB)*B3=0, (49)  equations as
— Bal (k6—2)%+ (k6)2]=0. 50 °
BZ :83[( ) ( ) ] ( ) D—kAk_lBG,B4H (5k—|):0, (54)
=1
Now from Eq.(47) we see that the class of compacton solu-
tions is obtained for nonlinearity parameterin t_he range B1—(kéB)2B,+(ksB)* B3+ (ksB)®B,=0, (55
2<k=5. Thus we have three compacton solutions for inte-
ger values of the nonlinearity parameker 2,3,5 which can
be obtained from Eq38) and Eqs(47)—(50) by substituting  g,— 2B28,(8%k?— 25k +2) + B*B,[ (2k? 82— 4k S+ 4)
a corresponding value of the paramekerlt can be easily ) .
checked that these solutions agree with the solutions in Egs. X (ké—2)°+(ké)*]=0, (56)
(12—(14). It should be noted that the class of compacton
solutions exists for all continuougoth integer and noninte- Bs—B2B,4(3k282— 12k 5+ 20) =0, (57)

gen values of the nonlinearity parametérin the range
2=<k=5. Similarly for any arbitrary odd-order dispersion
parameten=3, we get from Eq(37) and Eqs(41)—(45) for

(51)

the set of equations for determining,B and relation be-
tweeng;’'s as

D-— kAkilenﬁn%—lM r(Z(k*l)*ZI’]: 0’

pgo (—1)P(k5B)%B,11=0,

n

2, (CHPHB)P 2By M 2=0,

n

53M§<k*”*4+<5k—4>§3 (—1)PBpy1BFP M

=0,

Bn- MG P20 A= (5k—2n -+ 4) (B B2 M VA

_ ﬁn+lB4M l(z(k*l)*2ﬁ+4) :O,

BaMIk =tz g B2(sk—2n+2)MIKDmant2oq
(52)

For a given value of the nonlinearity paramekeand the
odd-order dispersion parametey one can finds from Eq.
(51) and other values of constarksB and 3;’s from Eq.
(52 to obtain the compacton solutiorj&q. (38)] of the
given Eq.(36). As an example, for the=3 case, the equa-
tion is

Upt B1(UX)x+ Bo(UX) a3+ Ba(u¥) s+ Ba(u¥)7,=0.
(53

which can be solved fok,B and the relation betwees’s to
get the compacton solutions.

Thus we find that with an increase in the value of the
odd-order dispersion parameterthe range of the nonlinear-
ity parametek also increases. From E1) we find that for
a given value of parameter, the class of compacton solu-
tions is allowed for parametérin the range Zk=<(2n+1).
Similarly the value ofs [Eqg. (38)], for which the compacton
solutions are allowed, also increases with the increase in pa-
rametem. For a given value of the parameterthe value of
6 varies within the range & 6<2n.

V. CONCLUSIONS

We have examined here the effect of a higher-order dis-
persion term on a particular class of compacton solutions of
the K(m,n) type equations as studied by Rosenau and Hy-
man[1]. We find that the addition of the higher-order dis-
persion term increases the range of the nonlinearity param-
eter for which the class of compacton solutions are allowed.
We have studied the Hamiltonian structure and conservation
laws for these types of higher-order equations and find that
these equations may not be integrable. We generalize the
problem by studying the two parameter generalized equa-
tions with an arbitrary odd-order dispersion term and nonlin-
earity and obtain a class of exact compacton solutions of this
generalized system of equations. We also obtain the range of
nonlinear parameters as well as the relations between them
for which the compacton solutions are allowed for this gen-
eralized system of equations. It would be interesting to ex-
amine the stability of these compacton solutions as obtained
here to find whether the compacton solutions for all the con-
tinuous values of the parameters within their allowed range
are stable, or, the parameter range as obtained here is further
limited by the stability criteria for the compacton solutions,
as it happens in the case of soliton stability for the higher-
order KdV type equationf4,5]. This is, however, an inde-
pendent problem and requires finding analytically stability
criteria for the compacton solutions, as is done for the case of
soliton stability . The other alternative approach would be to
perform numerical simulations of the scattering of compac-
ton solutiond 1] to examine the stability and preservation of
shape after scattering.
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